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Abstract

Correlation filter has drawn increasing interest in visual track-
ing due to its high efficiency, however, it is sensitive to par-
tial occlusion, which may result in tracking failure. To ad-
dress this problem, we propose a novel local-global correla-
tion filter (LGCF) for object tracking. Our LGCF model uti-
lizes both local-based and global-based strategies, and effec-
tively combines these two strategies by exploiting the rela-
tionship of circular shifts among local object parts and global
target for their motion models to preserve the structure of ob-
ject. In specific, our proposed model has two advantages: (1)
Owing to the benefits of local-based mechanism, our method
is robust to partial occlusion by leveraging visible parts. (2)
Taking into account the relationship of motion models among
local parts and global target, our LGCF model is able to cap-
ture the inner structure of object, which further improves its
robustness to occlusion. In addition, to alleviate the issue of
drift away from object, we incorporate temporal consisten-
cies of both local parts and global target in our LGCF model.
Besides, we adopt an adaptive method to accurately estimate
the scale of object. Extensive experiments on OTB15 with
100 videos demonstrate that our tracking algorithm performs
favorably against state-of-the-art methods.

1. Introduction

Visual tracking plays a crucial role in computer vision and
has a variety of applications such as robotics, surveillance,
human-computer interaction and so forth (Wu, Lim, and
Yang 2015). Despite great progress in recent years, object
tracking remains a challenging problem due to appearance
variations caused by partial occlusion, illumination changes,
deformations and so on. To address these issues, numerous
methods have been proposed (Fan and Xiang 2015; Cong et
al. 2015; Gao et al. 2014; Bao et al. 2012; Wu et al. 2011;
Fan et al. 2015; Possegger, Mauthner, and Bischof 2015;
Mei and Ling 2011; Kwak et al. 2015; Hare, Saffari, and
Torr 2011; Zhang, Ma, and Sclaroff 2014).

Recently, correlation filter has drawn increasing atten-
tion in computer vision due to its high efficiency and ro-
bust performance. Inspired by this, many correlation filter
based trackers (Bolme et al. 2010; Danelljan et al. 2014a;
Henriques et al. 2015; Ma et al. 2015; Zhu et al. 2016) are
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proposed and achieve good performance to some extend.
Nevertheless, due to the sensitivity of correlation filter to
occlusion, these trackers are prone to result in drift problem
and even tracking failure in presence of occlusion. To deal
with this problem, there are some attempts to apply part-
based strategy to correlation filter for tracking (Liu, Wang,
and Yang 2015; Li, Zhu, and Hoi 2015). This kind of track-
ers partition the object into multiple local parts, and each
part corresponds with an independent correlation filter to es-
timate position. The final position of object is determined by
combining the positions of all parts. Although these track-
ers can deal with occlusion in some degree, they still fail
to track object in the situation of heavy occlusion or defor-
mation because they ignore the spatial structure of object.
(Liu et al. 2016) incorporates structure information by taking
into account the motion model of each local part, however
this method ignores the fact that the motion models of parts
are constrained to that of global target and thus global ap-
pearance should be embedded into the model. In addition, it
does not consider the temporal consistency of motion model
which helps to alleviate the problem of drift away from ob-
ject.

Inspired by these motivations, we in this paper propose a
novel local-global correlation filter (LGCF) model for visual
tracking. Our LGCF combines local and global appearance
models by exploiting the circular shifts of global target and
local parts for motion models to preserve the inner structure
of object. For each local part, its motion model is represented
by circular shifts and consistent with the motion model of
global target. In this way, the spatial structure of target can
be preserved. Due to self-deformation of object, however,
the motion models of some parts may have slight discrepan-
cies with that of global target. Therefore, we introduce the
sparse constraint to model the relationship of motion models
among global target and local parts, which helps our LGCF
model tolerate outliers of local parts. To further improve the
robustness of our model, we take into consideration tempo-
ral consistencies in both local parts and global target, and in-
corporate them into our model to alleviate the issue of drift
away from object. In addition, to adapt our tracker to scale
changes, we adopt an adaptive mechanism to estimate the
scale of object, which is different from aforementioned part-
based correlation filter trackers. Both qualitative and quan-
titative experiments on large-scale benchmark prove the ef-
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fectiveness of our method.
In summary, we make the following contributions:

• We propose a novel LGCF model for visual tracking by
exploiting the relationship of motion models among local
parts and global target to preserve the structure of object.

• To reduce the risk of model drift, we introduce to incorpo-
rate temporal consistencies of both local parts and global
target into our LGCF model to improve its robustness.

• Extensive experiments on OTB15 with 100 videos (Wu,
Lim, and Yang 2015) demonstrate that our tracker per-
forms favorably against state-of-the-art methods.

2. Related Work

Object tracking is one of the most challenging problems in
computer vision and has been extensively studied (Wu, Lim,
and Yang 2015; Pang and Ling 2013; Li et al. 2013). Here
we would like to highlight two lines of works which are most
relevant to ours.

The first line of works are to explore correlation filter for
visual tracking. Owing to its high computational efficiency
in Fourier domain, correlation filter has attracted extensive
attention in object tracking. Bolme et al. (2010) propose a
correlation filter tracker by learning a minimum output sum
of squared error (MOSSE) for object appearance. Benefit-
ting from the high computational efficiency of correlation
filter, it has achieved real-time performance with a speed of
several hundreds frames per second. Henriques et al. (2012)
introduce kernel space into correlation filter and propose
a circulant structure with kernel (CSK) method for track-
ing. Later in (Henriques et al. 2015), Henriques et al. fur-
ther improve the performance of CSK tracker by replacing
gray feature with HOG feature and propose the kernelized
correlation filters (KCF) tracker. Danelljan et al. (2014b)
present an adaptive correlation filter tracking algorithm by
exploring color attributes of object. To solve the problem of
scale changes, Danelljan et al. (2014a) propose a discrimi-
native correlation filters based tracker (DSST) which learns
multi-scale correlation filters to deal with the scale varia-
tions of object. Zhang et al. (2014) embed contextual in-
formation into correlation filters for tracking and Ma et al.
(2015) propose a long-term correlation tracker with online
random fern classifier. Despite promising results of afore-
mentioned methods, their performances degrade in presence
of occlusion. Different from above trackers, our method is
able to handle occlusion by taking the benefits of part-based
structure, and exploiting the relationship of motion models
among local parts and global target to maintain structure of
object further improves its robustness.

The second line of works are to exploit part-based strategy
for visual tracking. One benefit of this strategy is its robust
ability to resist occlusion. When target undergoes occlusion,
remaining visible parts can still provide reliable information
for tracking. Adam et al. (2006) propose to model target ap-
pearance with local patch histograms. Liu et al. (2013) uti-
lize local sparse coding to model object appearance model,
and Zhong et al. (2014) use global and local sparse represen-
tations to model target appearance and simply combine them

for tracking. Nevertheless, due to high computational com-
plexity of these methods, their performances are limited. To
overcome this bottleneck, there are some attempts applying
part-based strategy to correlation filter for visual tracking.
Liu et al. (2015) propose to track target based on multiple
object parts with multiple independent correlation filters. Li
et al. (2015) suggest to find reliable patches to model object
appearance and use these patches to estimate the state of tar-
get. The most similar work to ours is (Liu et al. 2016) where
the structure of object is preserved by exploiting the relation-
ship of local object parts with correlation filters. However,
our method is significantly different from (Liu et al. 2016)
in two aspects. First, our method takes into account the mo-
tion models of both local parts and global target and exploits
their constrained relationship, while (Liu et al. 2016) only
considers the relationship among local parts and ignores the
importance of global target. Second, our tracker incorporates
temporal consistencies of local parts and global target in our
LGCF model to reduce the risk of model drift while (Liu et
al. 2016) does not take any temporal information into con-
sideration.

3. The Proposed Algorithm

3.1. Review of KCF Tracker

The KCF tracker (Henriques et al. 2015) models object ap-
pearance by a correlation filter w trained on an image patch
x with M × N pixels, where all circular shifts of xm,n are
generated as training samples with Gaussian function label
ym,n, (m,n) ∈ {0, 1, · · · ,M − 1} × {0, 1, · · · , N − 1}.
The w can be derived through the following optimization

w = arg min
w

∑
m,n

|〈φ(xm,n),w〉 − ym,n|2 + λ‖w‖2 (1)

where φ represents the nonlinear mapping function, and
λ denotes the regularization parameter. Using fast Fourier
transformation (FFT), Eq (1) is minimized as w =∑

m,n a(m,n)φ(xm,n), where the coefficient a is computed
with

a = F−1
( F(y)
F(〈φ(x), φ(x)〉) + λ

)
(2)

where y =
{
ym,n|(m,n) ∈ {0, 1, · · · ,M − 1} ×

{0, 1, · · · , N − 1}}, F and F−1 denote Fourier transform
and its inverse respectively. Given the learned a and appear-
ance model x̂, we can compute the response map ŷ of a new
patch z by

ŷ = F−1
(
F(a)�F(〈φ(z), φ(x̂)〉)) (3)

where � represents the Hadamard product. The target posi-
tion is determined by the location of maximal value of ŷ.

3.2. Local-Global Correlation Filter (LGCF) Model

First we transform Eq (1) to its equivalent dual form as the
following

min
a

1

4λ
aTXXTa+

1

4
aTa− aTy (4)
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Figure 1: The five boxes at bottom-left corner of each frame denote the circular shifts of global target and individual parts. We
can see that the shifts of object parts are close to the global object. Besides, we can also know that the temporal consistencies
exist in both global target and individual object parts.

where X = [x0,0, · · · ,xm,n, · · · ,xM−1,N−1]
T, and a con-

tains M × N dual optimization variables am,n. Eq (1) and
(4) are connected by w = 1

2λX
Ta.

Global Model: The global model is trained on the entire
object patch and can be expressed with

min
ag

1

4λ
aTg Hgag +

1

4
aTg ag − aTg yg (5)

where Hg = XgX
T
g and Xg represents the training samples

of global target.
Local Model: Assume that the object is divided into K
parts, and each part is corresponding with a correlation fil-
ter. Then our goal is to learn K weights {ak}Kk=1 via the
following optimization

min
{ak}Kk=1

K∑
k=1

(
1

4λ
aTkHkak +

1

4
aTk ak − aTk yk) (6)

where Hk = XkX
T
k (k = 1, 2, · · · ,K) represents the train-

ing samples of the kth localm part.
The basic idea of Eq (4) is to choose discriminative train-

ing samples xm,n via am,n to distinguish the object from
background. The training sample xm,n represent all possible
circular shifts which reflect the motion of object. Therefore,
choosing training samples xm,n via am,n is able to estimate
the motion of target, which is to say the model model of
target is encoded into a.

In an ideal situation, the motion model of each local part
should be consistent with that of global target. However, due
to the self-deformation of object, the motion models of some
local parts may be slightly different from that of global tar-
get. Thus we impose sparse constraint on the relationship of
motion models among global target and local parts, which
helps our LGCF model tolerate outliers of local parts. Fig-
ure 1 illustrates this thought. Based on this idea, we assume
the relationship of motion models among global target and
each local part as follows1

ak = ag + δk (7)

1Note that when applying Eq (7), the ag and ak should be re-
sized to have the same size. However, it does not influence the
LGCF model.

where ak and ag represent motion models of local part kth
(k = 1, 2, · · · ,K) and global target respectively. The δk de-
notes the constraint between ak and ag and should be sparse.

Therefore, the goal of our LGCF model is to jointly learn
the weights of global target ag and local parts {ak}Kk=1 in
the following optimization

min
ag ,{ak}Kk=1

{
K∑

k=1

(
1

4λ
aT
kHkak +

1

4
aT
k ak − aT

k yk)+

1

4λ
aT
g Hgag +

1

4
aT
g ag − aT

g yg + γ

K∑
k=1

‖δk‖1
}

s.t. ak = ag + δk

(8)

Between two consecutive frames, in fact, both objects
and their contexts are similar. Thus the selected discrimina-
tive training samples should also be similar in consecutive
frames. This is to say, the a in frame (t− 1) should be close
to that in frame t, which is called temporal consistency. The
temporal consistency exists in both global and local appear-
ance models (see the colorful trajectories in Figure 2). Thus
we revise our LGCF model in Eq (8) as follows

min
at
g ,{at

k
}K
k=1

{
K∑

k=1

( 1

4λ
(at

k)
THt

ka
t
k +

1

4
(at

k)
Tat

k − (at
k)

Tyt
k

)

+
1

4λ
(at

g)
THt

ga
t
g +

1

4
(at

g)
Tat

g − (at
g)

Tyt
g + γ

K∑
k=1

‖δt
k‖1

+
ξ

2
‖at

g − at−1
g ‖2 + β

2

K∑
k=1

‖at
k − at−1

k ‖2
}

s.t. at
k = at

g + δt
k

(9)

where ξ
2‖atg − at−1

g ‖2 and β
2

∑K
k=1 ‖atk − at−1

k ‖2 model
the temporal consistencies in global target and object parts,
respectively.

3.3. Optimization

In this section, we use Alternating Direction Method of Mul-
tipliers (ADMM) method (Boyd et al. 2011) to solve the op-
timization in Eq (9). Using augmented Lagrange multipliers,
we can incorporate the constraint condition into Eq (9) and
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obtain the following Lagrangian function

L(at
g, {at

k, δ
t
k, θ

t
k, η

t
k}Kk=1) ={

K∑
k=1

{ 1

4λ
(at

k)
THt

ka
t
k +

1

4
(at

k)
Tat

k − (at
k)

Tyt
k

}
+

1

4λ
(at

g)
THt

ga
t
g +

1

4
(at

g)
Tat

g − (at
g)

Tyt
g + γ

K∑
k=1

‖δt
l,k‖1

+
ξ

2
‖at

g − at−1
g ‖2 + β

2

K∑
k=1

‖at
k − at−1

k ‖2+

K∑
k=1

{
(θtk)

T(at
k − at

g − δt
k) +

ηt
k

2
‖at

k − at
g − δt

k‖2
}}

(10)

where θtk and ηtk are Lagrange multiplier and penalty pa-
rameter in frame t, and the new objective function becomes

min
at
g,{at

k,δ
t
k,θ

t
k,η

t
k}Kk=1

L(atg, {atk, δtk, θtk, ηtk}Kk=1) (11)

The ADMM algorithm iteratively updates one of the pa-
rameters by minimizing Eq (11) while keeping others fixed.
Update atg: Keeping other parameters fixed, atg can be up-
dated by solving Eq (12)

at
g = arg min

at
g

{ 1

4λ
(at

g)
THt

ga
t
g +

1

4
(at

g)
Tat

g − (at
g)

Tyt
g

+
ξ

2
‖at

g − at−1
g ‖2 +

K∑
k=1

{
(θtk)

Tat
g +

ηt
k

2
‖at

k − at
g − δt

k‖2
}}
(12)

and its solution is shown in Eq (13)

at
g =

(
1

2λ
Ht

g + (
1

2
+ ξ +

K∑
k=1

ηt
k)I

)−1

×
(
yt
g + ξat−1

g +

K∑
k=1

(θtk + ηt
ka

t
k − ηt

kδ
t
k)

) (13)

where I denotes identity matrix.
Update δtk: Keeping other parameters fixed, the problem in
Eq (11) w.r.t to {δtk}Kk=1 can be decomposed into K inde-
pendent sub-problems. The kth sub-problem is

δt
k = arg min

δt
k

{
γ‖δt

k‖1 − (θtk)
Tδt

k +
ηt
k

2
‖at

k − at
g − δt

k‖2
}

(14)

The Eq (14) can be rearranged into the following problem
according to (Boyd et al. 2011)

δtk = arg min
δt
k

{ γ

ηtk
‖δtk‖1 +

1

2

∥∥∥∥δtk − (atk +
θtk
ηtk
− atg)

∥∥∥∥
2}

(15)

and its solution can be obtained with

δtk = S γ

ηt
k

(atk +
θtk
ηtk
− atg) (16)

where Sσ(zi) = sign(zi)max(0, |zi| − σ) represents soft-
thresholding operator for vector z.
Update atk: Similarly, the problem in Eq (11) w.r.t {atk}Kk=1

can also be decomposed into K sub-problems, and the kth

sub-problem is

at
k = arg min

at
k

{ 1

4λ
(at

k)
THt

ka
t
k +

1

4
(at

k)
Tat

k − (at
k)

Tyt
k

+
β

2
‖at

k − at−1
k ‖2 + (θtk)

Tat
k +

ηt
k

2
‖at

k − at
g − δt

k‖2
} (17)

and its solution is shown as follows

atk =

(
1

2λ
Ht

k + (
1

2
+ β + ηtk)I

)−1

×
(
yt
k + βat−1

k − θtk + ηtk(a
t
g + δtk)

) (18)

Update θtk and ηtk: The Lagrange multiplier θtk and penalty
parameter ηtk are updated as follows

θtk = θtk + ηtk(a
t
k − atg − δtk), ηtk = τηtk (19)

So far, we have introduced the solution for our LGCF
model, as shown in Algorithm 1.

Algorithm 1 The solution for Eq (11)

Require: Ht
g , yt

g , Ht
k, yt

k, λ, γ, ξ, β,
atg , at−1

g , {atk, at−1
k , θtk, η

t
k}Kk ;

1: while not converged do

2: Update atg based on Eq (13);
3: for k = 1 to K do

4: Update δtk based on Eq (16);
5: Update atk based on Eq (18);
6: Update θtk and ηtk based on Eq (19);
7: end for

8: end while

Return: Correlation filters atg , {atk}Kk=1;

3.4. Tracking

After obtaining the global and local filters, we can esti-
mate the positions of global target and each part. For global
model, its response map in frame t can be computed with

ŷg = F−1
(
F(αg)�F

(〈φ(zg), φ(x̂g)〉
))

(20)

and the position p̄g of global target is determined by the
maximum value of ŷg . For local model, the response map
for the kth part is calculated with

ŷk = F−1
(
F(αk)�F

(〈φ(zk), φ(x̂k)〉
))

(21)

and the position pk for part k is determined the maximum
value of ŷk. The object position is estimated using pk via

p̄k = pk +Δk, k = 1, 2, · · · ,K (22)
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Figure 2: In image (a), the distance d1 between indigo and
green local parts is h1/2. The ration of d1 and object height
is 1/2. Likewise in image (b), the distance d2 between in-
digo and green local parts is h2/2, and the ration of d2 and
object height is 1/2. Thus we can use this relationship to
adaptively estimate the object scale.

where Δk denotes deformation vector (Zhang and Van
Der Maaten 2014) between part k and the object center in
last frame, and will be updated based on tracking result. The
final position P of object is determined by the estimated po-
sitions of both global and local models as follows

P = wgp̄g +

K∑
k=1

wkp̄k (23)

where wg and {wk}Kk=1 represent the weights of global tar-
get and local parts, and are determined by the maximum val-
ues of their response maps as follows

wg =
f(max(ŷg))

f(max(ŷg)) +
∑K

k=1 f(max(ŷk))
(24)

wk =
f(max(ŷk))

f(max(ŷg)) +
∑K

k=1 f(max(ŷk))
(25)

where f(z) = 1
1+exp(−z) .

To address the problem of scale changes, we adopt an
adaptive method by exploiting the relative distance among
local parts as in (Akin et al. 2016). Although the scale of
object changes all the time, the ration of relative distance
among local parts and scale of object is stable. Figure 2 il-
lustrates this idea. Thus the object scale St is estimated by

St = St−1 × 1

K(K − 1)

K∑
i=1

K∑
j=1

dist(pti, p
t
j)

dist(pt−1
i , pt−1

j )
(i �= j)

(26)
where dist(·, ·) denotes the Euclidean metric, and pti repre-
sents the position of part i in frame t.

After obtaining the tracking result, we need to update both
global and local models with current result. Different from
(Henriques et al. 2015), we update the models based on their
reliability. For global model, it is updated as follows

αt
g =

{
(1− ε)αt−1

g + εatg, f(max(ŷg)) > Θ

αt−1
g , otherwise

(27)

x̂t
g =

{
(1− ε)x̂t−1

g + εxt
g, f(max(ŷg)) > Θ

x̂t−1
g , otherwise

(28)
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Figure 3: Comparisons of precision and success plots. Our
LGCF tracker outperforms other state-of-the-art methods.

where Θ is a threshold. Similarly, the local model of part k
is updated with

αt
k =

{
(1− ε)αt−1

k + εatk, f(max(ŷk)) > Θ

αt−1
k , otherwise

(29)

x̂t
k =

{
(1− ε)x̂t−1

k + εxt
k, f(max(ŷk)) > Θ

x̂t−1
k , otherwise

(30)

4. Experiments

Setting up: Our tracker is implemented in MATLAB on a
3.7 GHz Intel i7 Core PC with 12GB memory. The average
running speed is around 8 frames per second. The γ, ξ and
β are both set to 0.01. The Θ is ranging from 0.55 to 0.65.
The number of local parts K is adaptively determined by the
ratio of object size Ow

Oh
, where Ow and Oh denotes object

width and height, respectively. If 2
3 ≤ Ow

Oh
≤ 3

2 , target is di-
vided into 2×2 local parts, i.e., K = 4; if Ow

Oh
< 2

3 , target is
divided into 3× 1 local parts, i.e., K = 3; if Ow

Oh
> 3

2 , target
is divided into 1× 3 local parts, i.e., K = 3. Other parame-
ters are set to the same as the KCF tracker (Henriques et al.
2015). We use the same parameter values and initialization
for all the sequences.
Dataset and evaluation metric: We evaluate the proposed
algorithm on the OTB15 benchmark (Wu, Lim, and Yang
2015) with comparisons to 35 trackers including 31 track-
ers and other four recently published state-of-the-art track-
ers with their shared source codes: MEEM (Zhang, Ma, and
Sclaroff 2014), TGPR (Gao et al. 2014), DSST (Danelljan
et al. 2014a), KCF (Henriques et al. 2015). For better evalu-
ation and analysis of our algorithms, the sequences are cate-
gorized according to 11 attributes, including scale variation,
occlusion, deformation and so on. We employ the precision
and success plots defined in (Wu, Lim, and Yang 2015) eval-
uate the robustness of the tracking algorithms.
Overall performance: Figure 3 shows the precision and
success plots of our LGCF tracker and other methods. To
make it clear, only the top 10 trackers are displayed. As
shown in Figure 4, our proposed method ranks the first and
achieves the best performance in both precision and suc-
cess ranking plots. In specific, the proposed LGCF tracker
achieves 0.782 ranking score in precision plots and 0.585
ranking score in success plots. Compared with the baseline
KCF tracker with 0.693 precision ranking score and 0.476
success ranking score, our method obtains around 9% and
11% improvements, respectively. Besides, our tracker also
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Precision plots of OPE - scale variation (65)
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Precision plots of OPE - occlusion (49)
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Precision plots of OPE - deformation (44)
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Precision plots of OPE - fast motion (43)
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Precision plots of OPE - in-plane rotation (51)

LGCF [0.822]
MEEM [0.793]
DSST [0.724]
KCF [0.697]
TGPR [0.661]
Struck [0.637]
TLD [0.613]
CXT [0.607]
VTD [0.564]
VTS [0.548]

0 5 10 15 20 25 30 35 40 45 50
Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

is
io

n

Precision plots of OPE - background clutter (32)
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Precision plots of OPE - low resolution (10)
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Figure 4: Comparisons of precision plots over eight tracking challenging of fast motion, background clutter, scale variation,
deformation, illumination variation, occlusion, in-plane rotation and low resolution. Our proposed method performs favorably
against other trackers.

Figure 5: Qualitative results of seven trackers on eight sequences.

outperforms the state-of-the-art MEEM tracker with 0.781
precision ranking score and 0.53 success ranking score.
Attribute-based evaluation: The sequences in the bench-
mark dataset are annotated with 11 attributes to describe the
different challenges in the tracking problem. These attributes
are helpful for analyzing the performance of trackers in dif-
ferent situation. We report the performance of our tracker for
eight challenging attributes in Figure 4. From Figure 4, we
are able to know that the proposed LGCF achieves favorable
results in seven attributes (within top 2), i.e., illumination
variation, scale variation, occlusion, deformation, fast mo-
tion, in-plane rotation and background clutter. While in low
resolution, our tracker only obtains the fifth ranking score.
Qualitative evaluation: We compare our tracker with six
state-of-the-art methods: KCF (Henriques et al. 2015),
MEEM (Zhang, Ma, and Sclaroff 2014), TGPR (Gao et al.

2014), DSST (Danelljan et al. 2014a), Struck (Hare, Saf-
fari, and Torr 2011) and SCM (Zhong, Lu, and Yang 2014).
The qualitative results are shown in Figure 5. From Figure
5, we can see that the proposed tracker performs well in il-
lumination variations (Trellis, Coke, Singer1 and Singer2),
occlusion (Lemming, Basketball, David3, Suv, FaceOcc2,
Jogging1 and Jogging2), scale changes (Dog1, Car4, and
Doll), deformation (Woman and Bolt), while other trackers
can only handle some situations and degrade in other cases.

5. Conclusion

In this paper, we propose a novel LGCF model for visual
tracking by exploiting the relationship of motion models
among local object parts and global target to preserve the
inner structure of target. In addition, to alleviate the issue
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of model drift, we incorporate temporal consistencies of
both local parts and global target in our model. Different
from other trackers, we adopt an adaptive method to effec-
tively estimate the scale of object. Extensive experiments on
large-scale tracking benchmark with 100 image sequences
demonstrate that the proposed algorithm performs favorably
against state-of-the-art methods.
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